如图所示,⊙的直径,和是它的两条切线,为射线上的动点(不与重合),切⊙于,交于,设.(1)求与的函数关系式;(2)若⊙与⊙外切,且⊙分别与相切于点,求为何值时⊙半径为1.
近年来随着人们生活方式的改变,租车出行成为一种新选择,本溪某租车公司根据去年运营经验得出:每天租车的车辆数 y (辆 ) 与每辆车每天的租金 x (元 ) 满足关系式 y = − 1 50 x + 36 ( 500 ⩽ x ⩽ 1800 ,且 x 为50的整数倍),公司需要为每辆租出的车每天支出各种费用共200元,设租车公司每天的利润为 w 元.
(1)求 w 与 x 的函数关系式.(利润 = 租金 − 支出)
(2)公司在“十一黄金周”的前3天每天都获得了最大利润,但是后4天执行了物价局的新规定:每辆车每天的租金不超过800元.请确定这7天公司获得的总利润最多为多少元?
如图, ΔPAB 内接于 ⊙ O , ▱ ABCD 的边 AD 是 ⊙ O 的直径,且 ∠ C = ∠ APB ,连接 BD .
(1)求证: BC 是 ⊙ O 的切线.
(2)若 BC = 2 , ∠ PBD = 60 ° ,求 AP ̂ 与弦 AP 围成的阴影部分的面积.
某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为 70 % ,九年二班的满分率为 80 % .
(1)求九年一班和九年二班各有多少名学生.
(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过 75 % ,求九年三班至少有多少名学生体育成绩是满分.
随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,本溪市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查.调查结果整理后,将这部分同学的态度划分为四个类别: A .积极参与; B .一定参与; C .可以参与; D .不参与.根据调查结果制作了如下不完整的统计表和统计图.
学生参与“朗读”的态度统计表
类别
人数
所占百分比
A
18
a
B
20
40 %
C
m
16 %
D
4
8 %
合计
b
100 %
请你根据以上信息,解答下列问题:
(1) a = , b = .
(2)请求出 m 的值并将条形统计图补充完整.
(3)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?
(4)“朗读”活动中,七年一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.
如图,抛物线 y = − 1 2 x 2 + 3 2 x + 2 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .
(1)试探究 ΔABC 的外接圆的圆心位置,求出圆心坐标;
(2)点 P 是抛物线上一点(不与点 A 重合),且 S ΔPBC = S ΔABC ,求 ∠ APB 的度数;
(3)在(2)的条件下,点 E 是 x 轴上方抛物线上一点,点 F 是抛物线对称轴上一点,是否存在这样的点 E 和点 F ,使得以点 B 、 P 、 E 、 F 为顶点的四边形是平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请说明理由.