如图所示,在三棱柱中,.
如图,正四棱柱的底面边长为1,异面直线与所成角的大小为,求: (1)线段到底面的距离; (2)三棱椎的体积。
已知函数,. (1)设. ① 若函数在处的切线过点,求的值; ② 当时,若函数在上没有零点,求的取值范围; (2)设函数,且,求证:当时,.
设数列是各项均为正数的等比数列,其前项和为,若,. (1)求数列的通项公式; (2)对于正整数(),求证:“且”是“这三项经适当排序后能构成等差数列”成立的充要条件; (3)设数列满足:对任意的正整数,都有,且集合中有且仅有3个元素,试求的取值范围.
某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线是以点为圆心的圆的一部分,其中(,单位:米);曲线是抛物线的一部分;,且恰好等于圆的半径. 假定拟建体育馆的高米. (1)若要求米,米,求与的值; (2)若要求体育馆侧面的最大宽度不超过米,求的取值范围; (3)若,求的最大值. (参考公式:若,则)
在平面直角坐标系中,椭圆的右准线方程为,右顶点为, 上顶点为,右焦点为,斜率为的直线经过点,且点到直线的距离为. (1)求椭圆的标准方程; (2)将直线绕点旋转,它与椭圆相交于另一点,当三点共线时,试确定直线的斜率.