设轴、轴正方向上的单位向量分别是、,坐标平面上点、分别满足下列两个条件:①且;②且.(其中为坐标原点)(I)求向量及向量的坐标;(II)设,求的通项公式并求的最小值;(III)对于(Ⅱ)中的,设数列,为的前n项和,证明:对所有都有.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球. (Ⅰ)求恰有一个黑球的概率; (Ⅱ)记取出红球的个数为随机变量,求的分布列和数学期望.
(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且. (1)求证:平面平面; (2)是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
(本小题满分12分)如图所示,在四边形中,,且,,. (1)求的面积; (2)若,求的长.
选修4—5:不等式选讲 已知函数,. (Ⅰ)当时,求不等式的解集; (Ⅱ)设,且当时,,求a的取值范围.
已知曲线是动点到两个定点、距离之比为的点的轨迹。 (1)求曲线的方程;(2)求过点与曲线相切的直线方程。