如图,在△ABC的外接圆O中,D是弧BC的中点,AD交BC于点E,连结BD.请考虑: BD2=DE·DA是否成立?若成立,给出证明;若不成立,举例说明.
(本小题12分)如图1,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图2,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图3,连接DE,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
(本小题12分)已知□ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+3-4,求BC的长.
(本小题10分)已知关于x的方程x2-(m-3)x+m-4=0.(1)求证:方程总有两个实数根;(2)若m是整数,方程有一个根大于-7且小于-3,求反比例函数的解析式。
(本小题8分)(1)如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,写出图中面积相等的一对平行四边形的名称为 , ;(2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,则S△PAC= ;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为 .(写出简要解答步骤)
(本小题8分)已知A组数据如下:0,1,-2,-1,0,-1,3.(1)求A组数据的平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是 .(写出具体解答步骤)