在图所示的平面直角坐标系中表示下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7)。(1)A点到原点O的距离是__ __个单位长。(2)将点C向左平移6个单位,它会与点 重合。(3)连接CE,则直线CE与轴是什么位置关系?(4)点F到、轴的距离分别是多少?
计算:(1)(a2)3÷(-a)2;(2)(a+2b)(a+b)-3a(a+b).
如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是 ,菱形ABCD的面积是 ;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
如图,已知反比例函数()的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥轴,AC=1(点C位于点A的下方),过点C作CD∥轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求该反比例函数的解析式;(2)求△OCD的周长;(3)若BE=AC,求CE的长.
如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,使EH=FH,连接BE,CF.(1)求证:△BEH≌△CFH.(2)当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.
某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?