解方程:(每小题4分,共8分)(1); (2).
解不等式组并将其解集在数轴上表示出来.
解方程:.
已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”. (1)①如图2,求出抛物线的“完美三角形”斜边AB的长; ②抛物线与的“完美三角形”的斜边长的数量关系是; (2)若抛物线的“完美三角形”的斜边长为4,求a的值; (3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC. (1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长; (2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明; (3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.
在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1. (1)求a的值; (2)设抛物线的顶点P关于原点的对称点为,求点的坐标; (3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m的取值范围.