(本小题满分9分)如图一次函数()的图象分别交轴、轴于点,与反比例函数图象在第二象限交于点,轴于点,OA=OD.⑴求m的值和一次函数的表达式;⑵在轴上求点,使△CAP为等腰三角形(求出所有符合条件的点).
根据三角形的三边a,b,c的长,判断三角形是不是直角三角形: (1)a=11,b=60,c=61;(2)a=,b=1,c=;
如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°. (1)求∠BAC的度数. (2)若AC=2,求AD的长.
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. [定理表述] 请你根据图1中的直角三角形,写出勾股定理内容; [尝试证明] 以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.
如图,如图,在△ABC中,AD⊥BC于D,∠ABC=2∠C,求证:AC2=AB2+AB•BC.
在直角三角形中,如果两直角边之和为17,两直角边之差的平方为49,求斜边的长。