某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元. (1)求甲、乙两种花木每株成本分别为多少元; (2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元,该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
如图,已知 ΔABC , ∠ B = 40 ° .
(1)在图中,用尺规作出 ΔABC 的内切圆 O ,并标出 ⊙ O 与边 AB , BC , AC 的切点 D , E , F (保留痕迹,不必写作法);
(2)连接 EF , DF ,求 ∠ EFD 的度数.
如图,在平面直角坐标系 xOy 中,已知 A , B 两点的坐标分别为 ( − 4 , 0 ) , ( 4 , 0 ) , C ( m , 0 ) 是线段 AB 上一点(与 A , B 点不重合),抛物线 L 1 : y = a x 2 + b 1 x + c 1 ( a < 0 ) 经过点 A , C ,顶点为 D ,抛物线 L 2 : y = a x 2 + b 2 x + c 2 ( a < 0 ) 经过点 C , B ,顶点为 E , AD , BE 的延长线相交于点 F .
(1)若 a = − 1 2 , m = − 1 ,求抛物线 L 1 , L 2 的解析式;
(2)若 a = − 1 , AF ⊥ BF ,求 m 的值;
(3)是否存在这样的实数 a ( a < 0 ) ,无论 m 取何值,直线 AF 与 BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.
湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 20000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 = 放养总费用 + 收购成本).
(1)设每天的放养费用是 a 万元,收购成本为 b 万元,求 a 和 b 的值;
(2)设这批淡水鱼放养 t 天后的质量为 m ( kg ) ,销售单价为 y 元 / kg .根据以往经验可知: m 与 t 的函数关系为 m = 20000 ( 0 ⩽ t ⩽ 50 ) 100 t + 15000 ( 50 < t ⩽ 100 ) ; y 与 t 的函数关系如图所示.
①分别求出当 0 ⩽ t ⩽ 50 和 50 < t ⩽ 100 时, y 与 t 的函数关系式;
②设将这批淡水鱼放养 t 天后一次性出售所得利润为 W 元,求当 t 为何值时, W 最大?并求出最大值.(利润 = 销售总额 − 总成本)
已知正方形 ABCD 的对角线 AC , BD 相交于点 O .
(1)如图1, E , G 分别是 OB , OC 上的点, CE 与 DG 的延长线相交于点 F .若 DF ⊥ CE ,求证: OE = OG ;
(2)如图2, H 是 BC 上的点,过点 H 作 EH ⊥ BC ,交线段 OB 于点 E ,连接 DH 交 CE 于点 F ,交 OC 于点 G .若 OE = OG ,
①求证: ∠ ODG = ∠ OCE ;
②当 AB = 1 时,求 HC 的长.
如图, O 为 Rt Δ ABC 的直角边 AC 上一点,以 OC 为半径的 ⊙ O 与斜边 AB 相切于点 D ,交 OA 于点 E .已知 BC = 3 , AC = 3 .
(1)求 AD 的长;
(2)求图中阴影部分的面积.