在正方体中, 是的中点求证:①∥平面;②平面∥平面
本题满分16分.已知,函数(,求函数的最小值.
(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知△的周长为,且. (1)求边长的值; (2)若(结果用反三角函数值表示).
(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知二次函数对任意均有成立,且函数的图像过点.(1)求函数的解析式;(2)若不等式的解集为,求实数的值.
(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.已知椭圆,常数、,且.(1)当时,过椭圆左焦点的直线交椭圆于点,与轴交于点,若,求直线的斜率;(2)过原点且斜率分别为和()的两条直线与椭圆的交点为(按逆时针顺序排列,且点位于第一象限内),试用表示四边形的面积;(3)求的最大值.
(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分6分.已知数列满足,,是数列的前项和,且().(1)求实数的值;(2)求数列的通项公式;(3)对于数列,若存在常数M,使(),且,则M叫做数列的“上渐近值”.设(),为数列的前项和,求数列的上渐近值.