已知的周长为,且(1)求边的长;(2)若的面积为,求角.
(本小题满分12分) 已知在时有极值0. (1)求常数a、b的值; (2)求的单调区间.
(本小题满分12分) 如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E、F分别为PC和BD的中点. (1)证明:EF∥平面PAD; (2)证明:平面PDC⊥平面PAD.
(本小题满分10分) 已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B. (1)求椭圆的方程; (2)求的取值范围。
(本小题满分12分)设函数,(且)。 (1)设,判断的奇偶性并证明; (2)若关于的方程有两个不等实根,求实数的范围; (3)若且在时,恒成立,求实数的范围。
(本题满分12分) 设是定义在上的增函数,令 (1)求证时定值; (2)判断在上的单调性,并证明; (3)若,求证。