(本题12分)如图,一抛物线的顶点A为(2,-1),交x轴于B、C(B左C右)两点,交y轴于点D,且B(1,0),坐标原点为O,(1)求抛物线解析式.(2)连接CD、BD,在x轴上确定点E,使以A、C、E为顶点的三角形与△CBD相似,并求出点E的坐标.(3)若点M(m,1)是抛物线上对称轴右侧的一点,点Q也在抛物线上,点P在x轴上,是否存在以O、M、P、Q为顶点的四边形是平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图,AD是ΔABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形
3x²+8x-3=0
(本题14分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒. (1)求线段CD的长; (2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由. (3)当t为何值时,△CPQ为等腰三角形?
(本题10分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE. (1)求证:AB⊥AE; (2)若BC2=AD•AB,求证:四边形ADCE为正方形.
(本题10分)已知:如图,在△ABC中,AB=AC,点D是边BC的中点,以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E. (1)求证:AD是圆O的切线: (2)若PC是圆O的切线,BC=8,求DE的长.