((本小题满分14分)已知椭圆的左、右两个顶点分别为、.曲线是以、两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点.(1)求曲线的方程;(2)设点、的横坐标分别为、,证明:;(3)设与(其中为坐标原点)的面积分别为与,且,求 的取值范围.
设点到,距离之差为,到轴,轴距离之比为,求的取值范围.
如果直线与双曲线两支各有一个交点,求的取值范围.
已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆于两点,且的中点坐标为,设为椭圆的右顶点,为椭圆上两点,且,,三者的平方成等差数列,则直线和斜率之积的绝对值是否为定值,若是,请求出定值;若不是,请说明理由.
已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆于两点,且的中点坐标为,求椭圆的方程;
已知椭圆的中心为坐标原点,焦点在轴上,斜率为且过椭圆右焦点的直线交椭圆于两点,与共线.设为椭圆上任意一点,且,证明为定值.