(12分)在△ABC中,a, b, c分别为内角A, B, C的对边,且(1)求A的大小;(2)求的最大值.
已知为定义在R上的偶函数,为实常数,(1) 求的值;(2) 若已知为定义在R上的奇函数,判断并证明函数的奇偶性。
已知集合,,求实数的值。
(14分)已知数列的首项,,….(1)数列的通项公式;(2)求数列的前项和.
(14分)等差数列{an}中,公差,其前项和为,且满足,。(1)求数列{an}的通项公式;(2)构造一个新的数列{bn},,若{bn}也是等差数列,求非零常数.
(14分)一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤,但需成本240元;若种花生,则每季每亩产量为100公斤,但成本只需80元。种花生每公斤可卖5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益?