(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,,且,证明:直线过定点().
(本小题满分12分)已知圆直线(1)求证:直线l与圆C相交(2)计算直线l被圆C截得的最短的弦长
已知圆 (1)若圆的切线在两坐标轴上的截距相等,求切线方程 (2)从圆外一点P(x,y)引圆的切线PQ,点Q为切点,O为坐标原点,且满足,当最小时,求点P的坐标。
(本小题满分12分)已知直线l与点A(-1,3),B(5,5)的距离都相等,且过两直线l1:x-y-1=0与l2:x+2y-4=0的交点,求直线l的方程.
(本小题满分12分)已知圆过点M(0,-3),N(2,1),且圆心到直线MN的距离是,求圆的标准方程
(本小题满分10分)设直线l的方程为(m2-m-6)x+(3m2+5m-2)y=3m+6(m∈R,m≠-2),根据下列条件分别求m的值:(1)l在x轴上的截距是-4;(2)斜率为0.5.