. 如图甲,直角梯形中,,,点、分别在,上,且,,,,现将梯形沿折起,使平面与平面垂直(如图乙). (Ⅰ)求证:平面; (Ⅱ)当的长为何值时,二面角的大小为?
(本小题满分10分)选修4—4:坐标系与参数方程 在极坐标系下,已知圆O:和直线, (1)求圆O和直线的直角坐标方程; (2)当时,求直线与圆O公共点的一个极坐标.
(本小题满分10分)选修4—1:几何证明选讲 如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且, (1)求的长度. (2)若圆F且与圆内切,直线PT与圆F切于点T,求线段PT的长度
已知函数 (1)若函数在定义域内单调递增,求的取值范围; (2)若且关于x的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)设各项为正的数列满足:求证:
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动. (1)当时,求椭圆的方程; (2)当的边长恰好是三个连续的自然数时,求面积的最大值.
如图,在三棱柱中,已知学,,,,,网,侧面, (1)求直线C1B与底面ABC所成角正切值; (2)在棱(不包含端点上确定一点的位置, 使得(要求说明理由). (3)在(2)的条件下,若,求二面角的大小.