平面直角坐标系中,已知椭圆:的离心率为,且点(,)在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.(i)求的值;(ii)求面积的最大值.
(本小题满分12分)在中,角A,B,C的对边分别为a,b,c,若,,且.(1)求角B的大小;(2)若,求b的取值范围.
(本小题满分10分)已知数列各项均为正,且,.(1)设,求证:数列是等差数列;(2)求数列的前n项和.
(本小题满分12分)设,,函数在与处取得极值.(1)求实数a,b的值;(2)若,求证:当时,恒成立;(3)证明:若,则.
(本小题满分12分)已知点,为平面直角坐标系中的点,点P为线段EF的中点,当变化时,点P形成的轨迹与x轴交于点A,B(A点在左侧),与y轴正半轴交于点C.(1)求P点的轨迹的方程;(2)设点M是轨迹上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N.①若D点坐标为,求线段CM的长;②求证:为定值.
(本小题满分12分)在如图所示的几何体中,与都是边长为2的等比三角形且所在平面互相平行,四边形BCED为正方形,,O,G分别是BC,DE的中点.(1)证明:平面ADE平面AOFG;(2)求二面角D-AE-F的余弦值.