某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如下表所示.
(Ⅰ)若在该样本中从报考文科的男生和报考理科的女生中随机地选出3人召开座谈会,试求3人中既有男生也有女生的概率;(Ⅱ)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关? (参考公式和数据:χ2(其中))
在数列中,,且对任意的,成等比数列,其公比为. (1)若=2(),求; (2)若对任意的,,,成等差数列,其公差为,设. ①求证:成等差数列,并指出其公差; ②若=2,试求数列的前项的和.
已知函数 (1)求函数在点处的切线方程; (2)求函数单调递增区间; (3)若存在,使得是自然对数的底数),求实数的取值范围.
已知向量. (1)若,且,求的值; (2)定义函数,求函数的单调递减区间;并求当时,函数的值域.
如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点. (1)证明:EF∥平面ABC; (2)证明:C1E⊥平面BDE.
已知实数满足, 其中;实数满足. (1)若且为真, 求实数的取值范围; (2)若是的必要不充分条件, 求实数的取值范围.