(本小题满分14分)已知区域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率.⑴求圆C及椭圆C1的方程;⑵设圆与轴正半轴交于点D,点为坐标原点,中点为,问是否存在直线与椭圆交于两点,且?若存在,求出直线与夹角的正切值的取值范围;若不存在,请说明理由.
(本小题满分14分)已知圆C的圆心在坐标原点,且与直线相切. (1)求直线被圆C所截得的弦AB的长; (2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程; (3)若与直线垂直的直线不过点R(1,-1),且与圆C交于不同的两点P,Q.若∠PRQ为钝角,求直线的纵截距的取值范围.
(本小题满分13分)已知函数,集合,集合. (1)求集合对应区域的面积; (2)若点,求的取值范围.
(本小题满分12分)设锐角三角形的内角的对边分别为,且. (1)求的大小; (2)求的取值范围.
(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3. (1)求这个等腰梯形的外接圆E的方程; (2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.
(本小题满分12分)已知等比数列的各项均为正数,且,. (1)求数列的通项公式; (2)设,求数列的前项和.