(本小题满分12分)某市场搞国庆促销活动,一个人同时转动如图2所示的两个转盘,记转盘(甲)得到的数,转盘(乙)得到的数为,设为中一等奖、为中二等奖.(Ⅰ)求中一等奖的概率; (甲) 图2 (乙)(Ⅱ)求中二等奖的概率.
已知直线 过点A(1,2),且与两坐标轴的正半轴围成的三角形的面积是4,求直线 的方程。
已知是等差数列,其前n项和为,已知求数列的通项公式
(本题满分18分,第(1)小题4分,第(2)小题8分,第(3)小题6分) 已知双曲线:的一个焦点是,且. (1)求双曲线的方程; (2)设经过焦点的直线的一个法向量为,当直线与双曲线的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上. (3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由.
(本题满分18分,第(1)小题9分,第(2)小题9分) 设复数与复平面上点对应. (1)设复数满足条件(其中,常数),当为奇数时,动点的轨迹为;当为偶数时,动点的轨迹为,且两条曲线都经过点,求轨迹与的方程; (2)在(1)的条件下,轨迹上存在点,使点与点的最小距离不小于,求实数的取值范围.
(本题满分16分,第(1)小题6分,第(2)小题10分) 如图,弯曲的河流是近似的抛物线,公路恰好是的准线,上的点到的距离最近,且为千米,城镇位于点的北偏东处,千米,现要在河岸边的某处修建一座码头,并修建两条公路,一条连接城镇,一条垂直连接公路以便建立水陆交通网. (1)建立适当的坐标系,求抛物线的方程; (2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头的位置),并求公路总长的最小值(精确到0.001千米)