已知:如图,正方形ABCD的边长为8,如果以A点为原点,AB所在直线为x轴,写出正方形各顶点的坐标。
某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示。已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,。请计算停车位所占道路的宽度EF(结果精确到0.1米)。 参考数据:sin40°≈0.64 cos40°≈0.77 tan40°≈0.84
已知抛物线(a≠0)的顶点在直线上,且过点A(4,0).⑴求这个抛物线的解析式;⑵设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由. ⑶设点C(1,-3),请在抛物线的对称轴确定一点D,使的值最大,请直接写出点D的坐标.
在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N .写出点C的坐标;求证:MD = MN;连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明.
若正整数a、b、c满足方程a2+b2=c2 ,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:商高数的三个数中,有几个偶数,几个奇数?写出各数都大于30的两组商高数。用两个正整数m、n(m>n)表示一组商高数,并证明你的结论。
已知关于x的一元二次方程x2+4x+m-1=0。请你为m选取一个合适的整数,使得到的方程有两个不相等的实数根;设α、β是(1)中你所得到的方程的两个实数根,求α2+β2+αβ的值。