.已知为实数,且,求的平方根。
已知是方程根.求代数式的值.
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造如下正方形:再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、 …相应长方形的周长如下表所示:仔细观察图形,上表中的 , 若按此规律继续作长方形,则序号为⑧的长方形周长是 .
如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是( )
任何一个正整数n都可以进行这样的分解: (s、t是正整数,且s≤t),如果在n的所有这种分解中两因数之差的绝对值最小,我们就称()是n的最佳分解,并规定.例如:18可以分解成1×18,2×9,3×6,这时就有.结合以上信息,给出下列关于的说法:①;②;③;④若n是一个整数的平方,则.其中正确的说法有_________.(只填序号)
某农户承包果树若干亩,今年投资13800元,收获水果总产量为18000千克.此水果在市场上每千克售元,在果园直接销售每千克售元(<).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.分别用含,的代数式表示两种方式出售水果的收入若=4.5元,=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出)?