某物流公司的甲、乙两辆货车分别从相距300千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶, 1.5小时时甲车先到达配货站C地,此时两车相距30千米,甲车在C地用1小时配货,然后按原速度开往B地;2小时时乙车也到达C地,乙车未停留直接开往A地.乙车的速度是 千米/小时,B、C两地的距离是 千米,A、C两地的距离是 千米;(2)求甲车的速度及甲车到达B地所用的时间;(3)乙车出发多长时间,两车相距150千米?
如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B(4,2). (1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标; (2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°. 根据上面提供的信息,回答下列问题: (1)写出样本容量、m的值及抽取部分学生体育成绩的中位数; (2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
先化简,再求值:,其中x=-4.
计算:.
已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长. (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.