正方体中,(1)求直线和平面所成的角;(2)M为上一点且=,在上找一点N使得.
如图,圆O1和圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1和圆O2的切线PM、PN(M、N为切点),使得.试建立平面直角坐标系,并求动点P的轨迹方程.
求过两圆C1:x2+y2-2y-4=0和圆C2:x2+y2-4x+2y=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程.
已知点A(4,6),B(-2,4),求: (1)直线AB的方程;(2)以线段AB为直径的圆的方程.
设三条直线l1:x+y-1=0,l2:kx-2y+3=0,l3:x-(k+1)y-5="0." 若这三条直线交于一点,求k的值.
用解析法证明:等腰三角形底边延长线上一点到两腰的距离之差等于一腰上的高.