设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线。
如图,四棱锥的底面是直角梯形,,,且,顶点在底面内的射影恰好落在的中点上. (1)求证:; (2)若,求直线与所成角的 余弦值; (3)若平面与平面所成的二面角为,求的值.
已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆的方程.
已知抛物线的焦点为双曲线的一个焦点,且两条曲线都经过点. (1)求这两条曲线的标准方程; (2)已知点在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点的坐标.
如图,斜四棱柱的底面是矩形,平面⊥平面,分别为的中点. 求证: (1);(2)∥平面.
已知为实数,:点在圆的内部; :都有. (1)若为真命题,求的取值范围; (2)若为假命题,求的取值范围; (3)若“且”为假命题,且“或”为真命题,求的取值范围.