(本小题满分12分)已知函数.(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和.
(本小题满分12分)在平面直角坐标系xOy中,有一个以为和焦点、离心率为的椭圆.设椭圆在第一象限的部分为曲线C, 动点P在C上, C在点P处的切线与x , y轴的交点分别为A、B,且向量.求:(1)点M的轨迹方程; (2)的最小值.
(本小题满分12分)设,两点在抛物线上,是的垂直平分线.(1)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;(2)当直线的斜率为2时,求在轴上截距的取值范围.
(本小题满分12分)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值.
(本小题满分12分)点P到M(-1,0)、N(1,0)的距离之差为2m,到x轴、y轴的距离之比为2.求m的取值范围.
(本小题满分10分)P是椭圆上的点, 是椭圆的左右焦点,设.求的最大值与最小值的差.