(本小题满分12分)若圆与圆 交点为A,B,求:(1) 线段AB的垂直平分线方程. (2) 线段AB所在的直线方程. (3) 求AB的长.
已知函数f(x)=, (1)求证:函数f(x)在区间(2,+∞)内单调递减; (2)求函数在x∈[3,5]的最大值和最小值.
已知全集U=R,集合A={x∣x>2或x<-1},集合B={x∣1<x<4},求A∩B,A∪B,(CA)∩B,(CA)∪(CB)
(本小题12分)离心率为的椭圆:的左、右焦点分别为、,是坐标原点. (1)求椭圆的方程; (2)若直线与交于相异两点、,且,求.(其中是坐标原点)
(本小题12分)椭圆的左、右焦点分别为、,直线经过点与椭圆交于两点。 (1)求的周长; (2)若的倾斜角为,求的面积。
(本小题12分)在甲、乙两个盒子中分别装有标号为的三个大小相同的球,现从甲、乙两个盒子中各取出个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相同数字的概率; (2)求取出的两个球上标号之和不小于的概率.