如图,P为正方形ABCD的对称中心,正方形ABCD的边长为,,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A、D、P的坐标;(2)求△HCR面积S与t的函数关系式;(3)当t为何值时,△ANO与△DMR相似?(4)求以A、B、C、R为顶点的四边形是梯形时t的值.
如图,在梯形ABCD中,AB∥CD,AD=BC,将△ACD沿对角线翻折后,点D恰好与边AB的中点M重合. (1)点C是否在以AB为直径的圆上?请说明理由. (2)当AB=4时,求此梯形的面积.
如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于D、E两点(点D在点E的右方)求点E、D的坐标.
如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E.
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD; (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC,(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
如图,△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD.求证:四边形ACFD是菱形.