如图,P为正方形ABCD的对称中心,正方形ABCD的边长为,,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t,求:(1)直接写出A、D、P的坐标;(2)求△HCR面积S与t的函数关系式;(3)当t为何值时,△ANO与△DMR相似?(4)求以A、B、C、R为顶点的四边形是梯形时t的值.
(11·天水)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°, OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边 长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向 左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止. (1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函 数关系式. (2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是 否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值; 若不存在,请说明理由.
(11·天水)在△ABC中,AB=AC,点O是△ABC的外心,连接AO 并延长交BC于D,交△ABC的外接圆于E,过点B作⊙O的切线交AO的延长线于Q,设
(11·天水)某电脑公司各种品牌、型号的电脑价格如下表,育才中学 要从甲、乙两种品牌电脑中各选择一种型号的电脑. (1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性 相同,那么A型号电脑被选中的概率是多少? (2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A型号,学校 规定购买费用不能高于10万元,又不低于9.2万元,问购买A型号电脑可以是多少台?