在直角坐标系xoy中,直线L的方程为x-y+4=0,曲线C的参数方程为(I)已知在极坐标(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线L的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线L的 距离的最小值
设是一次函数,且,求的解析式。
集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}, C={x|x2+2x-8=0}. (Ⅰ)若A=,求a的值; (Ⅱ)若A∩B,A∩C=,求a的值.
已知集合,求 (1)当时,中至多只有一个元素,求的取值范围; (2)当时,中至少有一个元素,求的取值范围; (3)当、满足什么条件时,集合为非空集合。
已知集合,, (1)若,求; (2)若,求实数a的取值范围.
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点. (Ⅰ)求该椭圆的标准方程; (Ⅱ)过原点的直线交椭圆于点,求面积的最大值.