(本小题满分12分)已知在定义域上为减函数,且其导函数存在零点。(I)求实数a的值;(II)函数的图象与函数的图象关于直线y=x对称,且为函数的导函数,是函数图像上两点,若,判断的大小,并证明你的结论。[
已知的值域为集合,的定义域为集合,其中。(1)当,求;(2)设全集为R,若,求实数的取值范围.
已知函数f(x)=x-ax+(a-1),。(1)讨论函数的单调性;(2)若,设,(ⅰ)求证g(x)为单调递增函数;(ⅱ)求证对任意x,x,xx,有.
近年来,网上购物已经成为人们消费的一种趋势。假设某淘宝店的一种装饰品每月的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式其中2<x<6,m为常数,已知销售价格为4元/件时,每月可售出21千件。(1)求m的值; (2)假设该淘宝店员工工资、办公等每月所有开销折合为每件2元(只考虑销售出的件数),试确定销售价格x的值,使该店每月销售饰品所获得的利润最大.(结果保留一位小数)
已知向量,,(,且为常数),设函数,若的最大值为1.(1)求的值,并求的单调递增区间;(2)在中,角、、的对边、、,若,且,试判断三角形的形状.
已知数列及其前项和满足: (,).(1)证明:设,是等差数列;(2)求及;(3)判断数列是否存在最大或最小项,若有则求出来,若没有请说明理由.