设函数(),其中。(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的极大值和极小值;(Ⅲ)当时,在区间上是否存在实数使不等式对任意的恒成立 , 若存在,求出的值,若不存在,说明理由。
已知定义域为R的函数满足(I)若,求;又若,求;(II)设有且仅有一个实数,使得,求函数的解析表达式
已知a>0,函数f(x)=ax-bx2,(1)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2;(2)当b>1时,证明:对任意x∈[0, 1], |f(x)|≤1的充要条件是:b-1≤a≤2;(3)当0<b≤1时,讨论:对任意x∈[0, 1], |f(x)|≤1的充要条件。
设集合,.若,求实数的取值范围.
在轴同侧的两个圆:动圆和圆外切(),且动圆与轴相切,求(1)动圆的圆心轨迹方程L;(2)若直线与曲线L有且仅有一个公共点,求之值。
已知抛物线,其焦点为F,一条过焦点F,倾斜角为的直线交抛物线于A,B两点,连接AO(O为坐标原点),交准线于点,连接BO,交准线于点,求四边形的面积.