已知函数的图像在与x轴交点处的切线方程是y=5x-10(1)求函数f(x)的解析式(2)设函数若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值。
已知平面上三个向量,其中.(1)若,且∥,求的坐标;(2)若,且,求与夹角.
已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)利用(2)的结论证明:若,则.
已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
在正项等比数列中,公比,且和的等比中项是.(1)求数列的通项公式;(2)若,判断数列的前项和是否存在最大值,若存在,求出使最大时的值;若不存在,请说明理由.
如图,在三棱锥中,和都是以为斜边的等腰直角三角形,分别是的中点.(1)证明:平面//平面;(2)证明:;(3)若,求三棱锥的体积.