已知顶点为原点的抛物线的焦点与椭圆的右焦点重合,与在第一和第四象限的交点分别为.(1)若△AOB是边长为的正三角形,求抛物线的方程;(2)若,求椭圆的离心率;(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
如图,在四棱锥中,四边形是矩形,侧面⊥底面,若点分别是的中点. (1)求证:∥平面; (2)求证:平面⊥平面.
在中,角的对边分别是,且. (1)求角的大小; (2)若,求面积的最大值.
(本小题满分10分)已知函数. (Ⅰ)求的最小正周期、对称轴和单调递增区间; (Ⅱ)若函数与关于直线对称,求在闭区间上的最大值和最小值.
(本小题满分10分)如图所示,在中,,若为的外心. (Ⅰ)求的值; (Ⅱ)求的值; (Ⅲ)若平面内一点满足,试判定点的位置.
(本小题满分8分)已知向量不共线,为实数. (Ⅰ)若,,,当为何值时,三点共线; (Ⅱ)若,且与的夹角为,实数,求 的取值范围.