如图,在△ABC中,点E是AC边上的中点,点F是AB边上的中点,连结EF并延长至点D,再连结BD,请你添加一个条件,使BD=CE(不再添加其它线段,不再标注或使用其他字母), 并给出证明,添加的条件是: ▲ .
如图1,在,将一块与全等的三角板的直角顶点放在点C上,一直角边与BC重叠。 (1)操作1:固定,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿方向平移的距离为___________; (2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
如图,根据图中数据解答下列问题. (1)sin2A1+sin2B1=________; sin2A2+sin2B2=________; sin2A3+sin2B3=________. 观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=________. (2)如图④,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,利用三角函数的定义和勾股定理,证明(1)中的猜想. (3)已知∠A+∠B=90°,且,求sinB.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长.
已知:如图,点在的直径的延长线上,点在上,且,∠. (1)求证:是的切线; (2)若的半径为2,求图中阴影部分的面积.
(1)如图①,用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹); (2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).