某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
数列首项,前项和与之间满足(1)求证:数列是等差数列 (2)求数列的通项公式(3)设存在正数,使对于一切都成立,求的最大值。
四个实数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求原来的四个数.
2008年底某县的绿化面积占全县总面积的%,从2009年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化. ⑴设该县的总面积为1,2008年底绿化面积为,经过年后绿化的面积为,试用表示;⑵求数列的第项;⑶至少需要多少年的努力,才能使绿化率超过60%(参考数据:)
在一直线上共插有13面小旗,相邻两面之距离为,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上?最短路程是多少?
已知为数列的前项和,点在直线上. ⑴若数列成等比,求常数的值; ⑵求数列的通项公式; ⑶数列中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项; 若不存在,请说明理由.