(本小题满分13分)在数列中,其前项和与满足关系式: .(Ⅰ)求证:数列是等比数列;(Ⅱ)设数列的公比为,已知数列,,求的值.
(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.
对于定义域为的函数,若同时满足:①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把函数()叫做闭函数.(1) 求闭函数符合条件②的区间;(2) 若是闭函数,求实数的取值范围.
比较与的大小
设函数,问是否存在,使恒成立?证明你的结论.