设椭圆的离心率,右焦点到直线的距离为坐标原点。(I)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
((本题13分)若函数为定义在上的奇函数,且时,(1)求的表达式;(2)在所给的坐标系中直接画出函数图象。(不必列表)
(本题13分)幂函数过点(2,4),求出的解析式并用单调性定义证明在上为增函数。
(本题13分)已知集合,,求:(1);(2)
已知函数且存在使(I)证明:是R上的单调增函数;(II)设其中 证明:(III)证明:
为了提高产品的年产量,某企业拟在2010年进行技术改革.经调查测算,产品当年的产量x万件与投入技术改革费用m万元(m≥0)满足x=3-(k为常数).如果不搞技术改革,则该产品当年的产量只能是1万件.已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产的产品均能销售出去.厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).(1)将2010年该产品的利润y万元(利润=销售金额-生产成本-技术改革费用)表示为技术改革费用m万元的函数;(2)该企业2010年的技术改革费用投入多少万元时,厂家的利润最大?