已知函数(a是实数),+1。(1)当时,求函数 在定义遇上的最值.(2)若函数f(x)在[1,+)上是单调函数,求a的取值范围;(3)是否存在正实数a满足:对于任意,总存在,使得f(x1)=g(x2)成立,若存在求出a的范围,若不存在,说明理由。
(本小题满分13分)已知,在水平平面上有一长方体绕旋转得到如图所示的几何体.(Ⅰ)证明:平面平面;(Ⅱ)当时,直线与平面所成的角的正弦值为,求的长度;(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面所成的角为,长方体的最高点离平面的距离为,请直接写出的一个表达式,并注明定义域.
(本小题满分13分)椭圆:与抛物线:的一个交点为M,抛物线在点M处的切线过椭圆的右焦点F.(Ⅰ)若M,求和的标准方程;(II)求椭圆离心率的取值范围.
(本小题满分13分)随机变量X的分布列如下表如示,若数列是以为首项,以为公比的等比数列,则称随机变量X服从等比分布,记为Q(,).现随机变量X∽Q(,2).
(Ⅰ)求n 的值并求随机变量X的数学期望EX;(Ⅱ)一个盒子里装有标号为1,2,…,n且质地相同的标签若干张,从中任取1张标签所得的标号为随机变量X.现有放回的从中每次抽取一张,共抽取三次,求恰好2次取得标签的标号不大于3的概率.
(本小题满分10分)选修4-5《不等式选讲》.已知a+b=1,对a,b∈(0,+∞),使+≥|2x-1|-|x+1|恒成立,求x的取值范围.
(本小题满分10分)选修4-1《几何证明选讲》.已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点(Ⅰ)求证:BD平分∠ABC(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.