甲、乙、丙三人在同一办公室工作,办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为、、。若在同一时间内打进三个电话,且各个电话相互独立,求:这三个电话是打给同一个人的概率;这三个电话中恰有两个是打给甲的概率。
(本小题满分12分)如图所示,已知在四棱锥中, ∥,,,且(1)求证:平面;(2)试在线段上找一点,使∥平面, 并说明理由;(3)若点是由(2)中确定的,且,求四面体的体积.
(本小题满分12分)已知的三个内角所对的边分别为,向量,,且. (1)求角的大小; (2)若,求
(本小题满分12分)泉城济南为增强市民的节水意识,面向全市征召宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(Ⅰ)若从第组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
选修4-5:不等式选讲(本小题满分7分)已知,不等式的解集为.(1)求;(2)当时,证明:.
选修4-4:极坐标与参数方程(本小题满分7分)在直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,曲线的参数方程为.(1)求曲线的直角坐标方程与曲线的普通方程;(2)试判断曲线与是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.