对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”.(Ⅰ)若,,,数列、是否为“类数列”?若是,指出它对应的实常数,若不是,请说明理由;(Ⅱ)证明:若数列是“类数列”,则数列也是“类数列”;(Ⅲ)若数列满足,,为常数.求数列前2012项的和.并判断是否为“类数列”,说明理由.
在中,角所对的边分别为,设,,记.(1)求的取值范围;(2)若与的夹角为,,,求的值.
设集合,.(1)当1时,求集合;(2)当时,求的取值范围.
已知函数,其中角的终边经过点,且.(1)求的值;(2)求在上的单调减区间.
如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点,平行于的直线在y轴的截距为,且交椭圆与两点,(1)求椭圆的方程;(2)求的取值范围;(3)求证:直线、与x轴围成一个等腰三角形,说明理由.
设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是,(1)求双曲线的方程;(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.