已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式;(2)设Tn为数列{}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.
满足,椭圆的离心率短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值; (3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
(Ⅰ)求证:数列{xn}是等比数列; (Ⅱ)设满足ys=,yt=(s,t∈N,且s≠t)共中a为常数,且1<a<,试判断,是否存在自然 数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由
为上的点,且,. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求三棱锥的体积
已知函数. (1)若点()为函数与的图象的公共点,试求实数的值; (2)设是函数的图象的一条对称轴,求的值; (3)求函数的值域