甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.(1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2).为了使全程运输成本最小,汽车应以多大速度行驶?
用分析法证明:
在平面直角坐标系O中,直线与抛物线相交于、两点。 (Ⅰ)求证:“如果直线过点,那么=”是真命题; (Ⅱ)写出(Ⅰ)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
用三段论证明函数在(,1上是增函数。
设是数列的前项和,,. ⑴求的通项; ⑵设,求数列的前项和.
已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,且直线的斜率都存在(记为),则是与点位置无关的定值。试写出双曲线的类似性质,并加以证明。