甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.(1).把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2).为了使全程运输成本最小,汽车应以多大速度行驶?
(本小题满分12分) (文科)已知二次函数,且. (1)若函数与x轴的两个交点之间的距离为2,求b的值; (2)若关于x的方程的两个实数根分别在区间内,求b的取值范围.
(本小题满分12分)已知定义域为的函数是奇函数。 (Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求的取值范围;
选修4—5:不等式选讲 (1)已知都是正实数,求证:; (2)已知a,b,c,且a+b+c=1,求证:a2+b2+c2≥.
选修4—4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.设点为坐标原点, 直线与曲线C的极坐标方程为. (1)求直线与曲线的普通方程; (2)设直线与曲线相交于A,B两点,求证:.
选修4-1:几何证明选讲 如图,BA是⊙O的直径,AD是切线,BF、BD是割线, 求证:BE•BF=BC•BD.