如图:在底面为直角梯形的四棱锥P—ABCD中,AD//BC,ÐABC=900,PD^平面ABCD,AD=1,AB=,BC=4。 [1]、求证:BD^PC; [2]、求直线AB与平面PDC所成的角;
若椭圆的中心在原点,对称轴在坐标轴上,且离心率为,一条准线的方程为,求椭圆的标准方程。
椭圆上一点到两焦点的距离之积为,求取最大值时的点的坐标。
双曲线的一条准线是,求的值。
点与定点的距离和它到定直线的距离的比是,求点的轨迹方程,并说明是什么图形。
顶点在原点,焦点在轴上的抛物线,截直线所得的弦长为,求抛物线的方程。