选修4—1:几何证明选讲如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点. (Ⅰ)求证:四点A,I,H,E共圆;(Ⅱ)若∠C=,求∠IEH的度数.
(本小题满分14分)如图,三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。 (Ⅰ)求证:DM//平面APC; (Ⅱ)求证:BC⊥平面APC; (Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.
(本小题满分12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组.下图是按上述分组方法得到的频率分布直方图。 (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩 合格的人数; (Ⅱ)从测试成绩在内的所有学生中随机抽取两名同学,设其测试成绩分别为,,求事件“”概率.
(本小题满分12分)在中,,. (Ⅰ)求角的大小; (Ⅱ)若最大边的边长为,求最小边的边长.
(本小题满分14分)已知函数 (1)求的定义域; (2)在函数的图象上是否存在不同的两点,使过这两点的直线平行于轴; (3)当满足什么条件时,在上恒取正值.
(本小题满分为14分)定义在(-1,1)上的函数满足: ①对任意都有; ②在上是单调递增函数,. (1)求的值; (2)证明为奇函数; (3)解不等式.