若⊙P与函数图象有且只有一个公共点,并且与轴、轴都相切的圆,则称⊙P是这个函数的伴圆.如图1,求的伴圆的圆心P的坐标及半径r;如图2,⊙P的半径为1,若⊙P是二次函数的伴圆,写出满足要求的开口方向不同的两个二次函数的解析式;如图3,求一次函数的所有伴圆的圆心P的坐标及半径.
如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为 度.
如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为 .
某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式.(2)求销售单价为多少元时,该文具每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°. (1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.
如图,已知△OAB的顶点A(﹣6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)证明AB⊥BE