(本小题9分)在年植树节活动期间,某中学组织七年级名学生、八年级名学生、九年级名学生参加义务植树活动,下图是根据植树情况绘制成的条形图(图1).请根据题中提供的信息解答下列问题:(1)参加植树的学生平均每人植树多少棵?(2)图2是小明同学尚未绘制完成的各年级植树情况的扇形统计图,请你把它补充完整(要求标注圆心角度数).
在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.
(本小题满分11分) 如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF,BE. (1)请判断:AF与BE的数量关系是 ,位置关系是 ; (2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明; (3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
在ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE. (1)如图①,试判断四边形EGFH的形状,并说明理由; (2)如图②,当EF⊥GH时,四边形EGFH的形状是 ; (3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是 ; (4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
(本小题满分8分)已知:如图,△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE;垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
(本小题满分6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°和35°,已知大桥BC与地面在同一水平面上,其长度为100m。请求出热气球离地面的高度。(结果保留整数,参考数据:,,