.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足=2时的概率。⑵的数学期望。
在中,分别是角所对的边,且满足.(1) 求的大小;(2) 设向量,求的最小值.
已知复数.(1) 求z的共轭复数;(2) 若,求实数的值.
已知直线的方程为,圆的方程为.(1) 把直线和圆的方程化为普通方程;(2) 求圆上的点到直线距离的最大值.
已知函数,其中且m为常数.(1)试判断当时函数在区间上的单调性,并证明; (2)设函数在处取得极值,求的值,并讨论函数的单调性.
已知函数.(1)试求函数的递减区间;(2)试求函数在区间上的最值.