(本小题满分13分)已知函数,且(1)若函数是偶函数,求的解析式;(2)在(1)的条件下,求函数在区间上的最大值和最小值。(3)要使函数在区间上单调递增,求的取值范围.
如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
若,观察下列不等式:请你猜测满足的不等式,并用数学归纳法加以证明.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,.(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求的值(点为坐标原点);(Ⅲ)若坐标原点到直线的距离为,求面积的最大值.
设函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由.(Ⅲ)关于的方程在上恰有两个相异实根,求实数的取值范围.