在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(Ⅰ)求取出的两个球上标号为相同数字的概率;(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
已知曲线的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是ρ=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为上任意一点,求的取值范围.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.
已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,不等式恒成立,求实数的取值范围.(Ⅲ)求证:(,e是自然对数的底数).
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.(Ⅰ)求抛物线的方程;(Ⅱ)当点为直线上的定点时,求直线的方程;(Ⅲ)当点在直线上移动时,求的最小值.
小波以游戏方式决定:是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若就去打球;若就去唱歌;若就去下棋.(Ⅰ)分别求小波去下棋的概率和不去唱歌的概率.(Ⅱ)写出数量积X的所有可能取值,并求X分布列与数学期望