已知定义在上的函数,其中为大于零的常数.(Ⅰ)当时,令,求证:当时,(为自然对数的底数);(Ⅱ)若函数,在处取得最大值,求的取值范围
如图,在直三棱柱中, AB=1,,. (Ⅰ)证明:; (Ⅱ)求二面角A——B的余弦值。
已知命题:“函数在上单调递减”,命题:“,”,若命题“且”为真命题,求实数的取值范围.
在长方体中,已知DA=DC=4,DD1=3,求异面直线A1B与B1C所成角的余弦值。
(本小题满分12分)已知椭圆:,过坐标原点O作两条互相垂直的射线,与椭圆分别交于A,B两点. (I)求证O到直线AB的距离为定值. (Ⅱ)求△0AB面积的最大值.
(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AD=AAl=1,AB=2,点E在棱AB上移动. (I)证明:D1E上AlD; (Ⅱ)当E为AB的中点时,求点E到面ACD1的距离; (Ⅲ)在(II)的条件下,求D1E与平面AD1C所成角的正弦值.