如图所示,椭圆C:的一个焦点为F(1,0),且过点(2,0)(1)求椭圆C的方程; (2)已知A、B为椭圆上的点,且直线AB垂直于轴,又直线:=4与轴交于点N,直线AF与BN交于点M.(ⅰ)求证:点M恒在椭圆C上;(ⅱ)求△AMN面积的最大值.
已知正数数列中,,前项和为,对任意,、、成等差数列.(1)求和;(2)设,数列的前项和为,当时,证明:.
如图,三棱柱中,△ABC是正三角形,,平面平面,.(1)证明:;(2)证明:求二面角的余弦值;(3)设点是平面内的动点,求的最小值.
在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.(1)下表是这次抽查成绩的频数分布表,试求正整数、的值;
(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;(3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).
已知函数. 的部分图象如图所示,其中点是图象的一个最高点.(1)求函数的解析式;(2)已知且,求.
已知为椭圆,的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .(1)证明: 成等比数列;(2)若的坐标为,求椭圆的方程; (3)在(2)的椭圆中,过的直线与椭圆交于、两点,若,求直线的方程.